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( ABSTRACT

7Markov Decision Processes deal with sequential decision

making in stochastic systems. Existing solution techniques

provide powerful tools for determining the optimal policy set

in such systems, however, many practical problems have

extremely large state and action spaces making them

computationally intractable. Typically, the state variable

definition is n-dimensional and the number of states expands

at a rate proportional to the power of n. For such large

problems, the need for large amounts of random access memory

and computation time restricts the ability to obtain

solutions. The purpose of this paper is to both present a

methodology which facilitates the solution of large scale

problems, and provide computational results indicating the

value of the approach. -
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INTRODUCTION

An undiscounted, infinite horizon, discrete time Markov

Decision Process problem can be described as follows: A

system has N states and for each state i the decision maker

can select any alternative from set Ki - If the system is in

state i and alternative k is selected, the system will make a

transition to state J, J-1,...,N, according to the given

transition probability vector [pilk,p1 2 k,...,piNk], and earn

a reward (cost) rijk.

A policy is defined as a collection of selected

alternatives for all states. vi(n) denotes the total expected

earnings over the next n transitions if the system is now at

state i and the optimal policy is followed.

The Dynamic Programming formulation developed by Howard

(5] for the finite horizon problem gives the following

recursive equations :

N

Vi(n+l) = MAX{ I pijk(rijk+ vj(n)))

kEKi J-1

N

. MAX{qjk+ pijkvj(n)), (i-l,...,N),

kEK i  J-1

N

where qik I pijkrijk.

J.1
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Since the infinite horizon process is allowed to make

infinitely many transitions, the total expected earnings is

eventually infinite. The goal of infinite horizon Markov

Decision Process optimization is thus to find the policy that

maximizes (minimizes) the expected gain (g) per transition.

N

g = Jiqi'

i=l

where 7i is the limiting state probability for

state i.

Howard's Policy Iteration method [5] can be applied to

infinite horizon problems. In this procedure, relative

values, Vi's, are determined for a given policy by solving a

set of N simultaneous linear equtions. These relative values

are used in a policy improvement procedure to find a policy

with a higher (lower) gain. The new policy is used to
U"

determine a new set of relative values vi. This process is

repeated until no better policy can be found. The

disadvantage of Howard's Policy Iteration for large scale

problems is the computational effort required to solve the N

simultaneous linear equations.

A successive approximation approach for solving the N

equations can be shown empirically to be computationally more

efficient. The successive approximation method can be stated

as follows

If all transition probability matrices (of all possible

policies) are single chained, and all those associated with

2
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6maximal gain policies are aperiodic, the following recursive

computation will eventually converge to the optimal policy

(12]

N

yj(n+l) - MAX{qik+ I p)jkwj (n ) } ,

kEK i  j=1

wi(n+l) - yi(n+l)-YN(n+l),

starting with wi(O) - Yj(O)-YN(O).

It also can be shown that YN(n) converges to the optimal

gain and the Wi(n)'s converge to the relative values as in

Howard's method.

Morton [9] showed that a fixed policy successive

approximation guarantees the convergence of the relative

values (i.e.,wi(n)'s) in on the order of l/(I-a) iterations,

where 0 is the second largest eigenvalue of the transition

matrix of this fixed policy. He suggested a method similar to

Howard's Policy Iteration procedure, except that the relative

values are computed by the fixed policy successive

approximation. In this paper, we modify Morton's approach in

order to gain computational efficiency.

OTHER RKLEVANT LITERATURE

We will limit discussion to the undiscounted, discrete

time Markov Decision Process problem. Bellman [1] first

proposed the Markov Decision Process problem. Howard 151

3



presented the Policy Iteration approach, which later was

generalized to other classes of Harkov Decision Processes.

His work also gave a detailed discussion of the modeling

concepts of Harkov Decision Processes.

White [17] first proved the asymptotic behavior of

successive approximations under the condition that there

exists a path of u step transitions (for all possible

policies) connected to some state from all other states,

where u is a positive integer. Schweitzer [12] later showed

that if all transition probability matrices are single

chained and aperiodic, then the successive approximation for

Howard's Dynamic Programming approach [5] results in the

asymptotic convergence of the total expected earnings (vj(n))

to a linear function.

In addition, alternate Linear Programming formulations

were presented by Manne [7], Wolfe and Dantzig [18], and

Wagner [16]. It was shown that the optimal solutions are

always pure policies. It might also be noted that for a

Markov Decision Process, Howard's Policy Iteration is

equivalent to the block pivoting approach of Linear

Programming.

Odoni [10] presented upper and lower bounds for the gain

and relative state costs using the successive approximation

approach, thus establishing rational stopping criteria for

the procedure. A more general condition of the asymptotic

behavior of successive approximation for the multichain case

was given by Schweitzer and Federgruen [13].

The generalizations of Policy Iteration and successive

4'4
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approximation to periodic Markov Decision Processes have been

's presented by Peterson [11] and Su and Deninger [15]. Zaldivar

* and Hodgson [19] proposed an extrapolation procedure for

speeding convergence of the relative values. Hodgson aad

Koehler [4] investigated scaling techniques to speed

convergence in Markov, semi-Markov and continuous parameter

Decision Processes. Schweitzer and Seidmann (14] suggested a

method of polynomial approximations for the relative values

by noticing that the relative values could be fit accurately

on the state space.

OBSERVATIONS

Three observations relative to real-world large scale

Markov Decision Process problems can be made.

(1) We have examined many production-inventory problems

formulated as Markov Decision Processes. Typically, a large

portion of states are transient for an optimal policy set.

Since recurrent states form a closed communicating class,

then by the fixed policy successive approximation, the

alternatives at transient states do not influence the

calculation of the relative values of the recurrent states or

the gain of the system.

(2) The recurrent states of the optimal policy tend to

cluster in a small number (possibly 1) of compact groups.

(3) The state space is vector valued, i.e.,

and the alternatives can also be described

as vector valued, i.e., k=(kl,k 2 ,...,km). Note that the
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*" dimension (s) of the state variable could be different from

the dimension (m) of the alternative vector. An

interpretation of the state variable i might be the amount of

inventory of product at each stage of production. An

interpretation of the alternative vector k might be the

amount of product ordered at each stage of production. It

should be noted that in the following state designations i

and j refer, when appropriate, to the vector state

designation and k refers to the vector alternative

designation.

BASIC CONCEPTS FOR THE PROCEDURE

(1) I-step transient states

For a given transition matrix, let R denote the set

of recurrent states and T denote the set of transient states.

We know that if iER, and jcT, then pij =0, i.e., there is no

transition from a recurrent state to a transient state.

Note that the fixed policy successive approximation

is as follows,

N

yi(n+l) qi+ iPjWj( n ) p

i.-i (1)

wi(n+l )  =Yi(n+l)-YN(n+l). (i-l,..,N)

For a state iER, Pij>0 only for jER. Thus it is possible

to ignore the computation of wj(n) and yj(n) for transient

6K .. ?'* .vK:.KK2K2jZ ;PQ4~cK.



states and limit the range of the summation in (1) to the

recurrent states without altering the result of the

computation for the recurrent states.

In addition, many of the transient states can be

Sclassified as "one-step transient states", ... , "I-step

transient states", etc. A state is said to be a "I-step

transient state" if, upon starting in this state, the system

will reside in a recurrent state after exactly I-transitions

with probability = 1. Clearly, within one step, a two-step

transient state can only reach recurrent states and one-step

transient states.

In computing equation (1), if i is a one-step transient

state, the relative value wi can be calculated exactly with

one iteration after convergence of the relative values of the

recurrent states is achieved. As for a two-step transient

state, it is necessary only to calculate its relative val9e

for two iterations after the convergence of recurrent states

is achieved.

(2) Neighboring states

The neighboring states to state i are defined to be

those states that are within a radius r of the state i in the

s-dimensional state space. For example, a two dimensional

state (ili 2 ) has the following neighboring states within a

radius of 1 (1+radius~ o1:(ll,2), (i11i2+1), ('1li) (li-)

It should be noted that within the concept of Markov

Processes, it is useful to think of the neighborhood of a set

of states (e.g., the set of recurrent states). Since there

7
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would normally be considerable overlap in the identification

of neighboring states, the neighborhood of the recurrent set

of a Markov Process might contain fewer states than are in

the recurrent set itself.

The concept of neighboring states will help restrict

computation to a limited set of states. Consequently, it will

limit both the amount of computation and active memory

required.

A PROCEDURK

We now state the procedure. The conditions under which

the procedure is guaranteed to achieve the optimal policy set

will be given in the next section.

1. For a given policy, compute the limiting state

probabilities in order to determine the set of recurrent

states, R.

2. Find neighboring states within some radius r for all

recurrent states. Let the set of all the neighboring states

not in R be A.

3. Find all the states that are reachable (in one or

more transitions) from A but not including the states in A or

R. Let the set of these states be C.

4. Implement the fixed policy successive approximation

for the states in the set R+A+C for a fixed number of

iterations.

5. Making use of the relative values wi calculated in

step 4 for states in R+A+C, implement the policy improvement:

8
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I

max {qjk+ pijkwj(n)}, i,JER+A+C,

kFK i

where K i' denotes the set of alternatives for state

-i that can only make transition to states in R+A+C.

6. If there is no change in the policy set and the

wi(n)s have converged", stop. Otherwise, go to step

The purpose of determining set C in step 3 is to find

all the states that are in the paths from neighboring states

to recurrent states. This is relatively easy computationally

because of the structure of the state space in real problems,

i.e., a "neighboring" state should be very "close" to the

recurrent states in the state space. Computational experience

has shown that C is typically a very small set.

In step 4, the fixed policy successive approximation is

restricted to the set R+A+C. Since all the states in A+C have

a path to R (note that many states in A+C are typically

I-step transient with small I), fixed policy successive

approximation guarantees the convergence of the relative

values.

Step 5 restricts the policy improvement to the set of

alternatives that communicate within R+A+C. If an alternative

communicates with a state j outside R+A+C, it is not

possible to compare this alternative with other alternatives

because the relative value (wj(n)) is unknown. Note that the

new policy generated by this policy improvement procedure

restricts all states in R+A+C to communicate only with the

states in R+A+C. In other words, the new recurrent chain, R',

9
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contains only states in R+A+C. With this new recurrent chain,

we have a new set R'+A'+C' which could be used to find new

relative values and, consequently, a new policy set.

Notice that step 1 is actually efficient in

computation. Initially a single state is assigned a state

probability of 1 and then the state probabilities are

computed recursively by using l(n+l)-ir(n)P, where l(n)is the

state probability vector after n transitions and P is the

transition probability matrix. In real Markov Decision

problems n(n) is usually a sparse vector, the actual

computations at each iteration would only include these

states that have positive entries of ir(n) as well as

reachable states from these states. Given that the

* underlining Markov process is single-chained, it will

-: eventually converge to its limiting state probabilities and

"* thus find the set of recurrent states. In the actual

computations, we would also restrict the number of iterations

to a predeterminated number (say, 10). Even though some

states that are actually recurrent may not be included in the

recurrent set within the given number of iterations, if there

is at least one recurrent state in this "incomplete"

recurrent set, step 3 of the procedure will find all the

other recurrent states.

The savings in computation of the procedure directly

relate to the scheme that only a part of states (R+A+C) are

actually involved in the computations at each iteration.

5-10
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CONDITIONS FOR CONVERGENCE OF THE PROCEDURE

First, the definition of a concave (convex) function in

the discrete space is introduced.

Definition Let S2 be an m-dimensional discrete state

space and (kl,k 2 ,...,km) E Q , where the ki are

integers. A function f(klk 2,..,km) is said to be

concave (convex) if for any vectors kakb,kc E S , where

k c - xka+(1-X)kb for some A c(0,1),

we have Xf(ka)+(1-X )f(kb) < f(k c )

( (l X )fkb) f(k c )  )

In general, assume that there exits an s-dimensional

state variable (il,i 2 ,...,is) and an m-dimensional

alternative variable (ki,k2 ,...,km) at each state. Assume

also the objective is to maximize the gain of the system. The

procedure will find the optimal solution if the system

satisfies the following two conditions

1. Consider an alternative variable (kl,k 2 ,...,km)

that brings the system to a set of states, say S. The

neighborhood chosen to implement the procedure must satisy

the following: If we increase (or decrease) any entry of this

alternative variable by I unit, for example,

(klk 2 ,...,ki+1,...,km), the new alternative will bring the

system in one transition to a set of states that is included

in the states in S plus the neighborhood of S.

2. For each state i, the test quantity

11
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qj(k1 ,k2 ,.'',k)+ plj(kJ k 2 ,e'*akm)wj is a concave function

• in (kl,k 2 ,...,k,) (The test quantity needs to be convex if

the objective is to minimize the gain).

If the above two conditions are true, then whenever

the current policy is not optimal for a given state in the

current set R, there must exist some better alternative

(i.e., larger (smaller) test quantity) that keeps the system

within the current R+A+C set. This alternative would be found

by the modified policy iteration. This implies that under

conditions 1 and 2, if the policy set for states in R is not

optimal, then a new (better) policy set can be found. This

procedure can be repeated eventually terminating with the

optimal policy set. The problem is that while many models

satisfy condition 1, few models will fully satisfy condition

2. However, in the following section, it will be seen that,

empirically at least, this approach to computation is both

robust and extremely efficient.

A TEST PROBLEM

In this section a test problem is described. The problem

does not fully satisfy condition 2. However, we will see in

the following section (COMPUTATIONAL RESULTS) the robustness

of the procedure In solving the problem. A multistage

production-inventory system has been used as a test problem

for our methodology. Clark and Scarf [3] formulated this

problem and proposed a heuristic algorithm to find control

rules for the system. Lambrecht, Luyten and Muckstadt [6]

a. 12



formulated it as a Markov Decision Process and offered an

interesting computation comparison of these two approaches.

Consider a two-stage production-inventory system which

operates on a period to period basis. (See FIGURE 1 for a

schematic of the system.) At the beginning of each period,

production at each stage must be determined. There is an in-

process and a finished product inventory. The units of

inventory and production are integers. There is a one period

delay for production at the second stage. The system incurs

set up and variable costs of production, inventory costs and

shortage costs. The maximum inventory level at each facility

is restricted. The demand for a period is expressed as a

probability mass function. This is an infinite horizon,

undiscounted, discrete time Harkov Decision Process problem.

The objective is to minimize the total cost rate of the

system.
.5

The following terminology is useful in describing the

model:

1. State variable (i1 ,i2 ) : il is a nonnegative integer

value representing the on-hand inventory level of stage 1, i2

is a nonnegative integer representing the on-hand plus on-

order inventory of stage 2. Let i-(il 1i 2 )-

2. Alternative variable (kl,k 2 ) : k, is a nonnegative

integer representing the number of units to be produced at

stage 1, 11 - a nonnegative integer representing the number

of units that Lo be produced at stage 2. Let k=(kl,k 2 )-

3. Demand D : a random variable which can take on the

values 0, 1, 2, , depicting the units of finished product

13



In-Process Finished
Raw Product Product
Material Inventory Inventory Demand

> > -----------

Stage 1 Stage 2

FIGURE 1
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ordered according to probability mass function, p(d).

4. Maximum inventory Li and L2 : LI is the maximum

inventory of stage 1 and L2 is the maximum inventory of stage

2.

The state variables are defined to be the integer pairs

(ili 2 ), with i1 < Li and i2 < L2. If the the system is now

at state (i1 ,i2 ) and alternative (kl,k 2 ) is chosen, the

transition is

(ili 2 ) --------.> (l+kl-k2,(i2-D)++k2),

(2)

where (x)+ - max(Ox)

To assure that the inventory remains at or below the

maximum inventory level, the sum of on hand and on order

, inventory is limited to be less than or equal to L2 (the

maximum inventory level at stage 2), i.e., k2+i 2 < L2.

It can be shown that if the current alternative at some

state is (klk 2 ) and the state communicates directly to a set

of states, say R, then an increase (or decrease) of one unit

of kI  or k2 will bring the system to a set of states that

is in R+A, where A is the neighboring set of radius r- r2.

Notice that this is equivalent to condition 1 of the

procedure.

From our computational experience for this model, the

relative costs wl'S normally form a convex function in

(i1 ,i2 ) (A similar observation was given by Schweitzer and

Seidmann [14]). Making use of this observation and the

15
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state transitions described in (2), it can be shown that

p:jpi- iis normally a convex function in (klk 2 ).
j

The cost of a transition given a demand d is

rij(d) k HC1*(iI+i 2 )+HC2*i 2+

VC1*(kl)+VC2*(k 2 )+

min(1 ,k 1 )*SC1+min(1 ,k2 )*SC2+

SHC*(12 _d)_,

where HCi and HC2 are the echelon inventory holding

costs of stage 1 and 2, VC1 and VC2 are the variable costs of

stage I and 2, SC1 and SC2 are the setup costs of stage 1

and stage 2, SHC is the shortage cost, and (x)--min(Ox).

Note that J is determined by d.

It is easy to see that ri,j(d)k is a convex function in

(kl,k 2 ) for k, > 1 and k 2  1 1. Thus qk p(d)rij(d) is

also a convex function in (k1 ,k2 ) for k, > 1 and k2 > 1.

However, qj k is not convex for k > 0 and k2 > 0 due to the

setup costs, SC1, SC2.

Notice that the above discussion of the convexity of q:k
k+

is also true for the test quantity q, + PjjkW J

We have shown that the test quantity of this test

problem does not "completely" satisfy the convexity

requirement. However, all the test problems were solved

during our computational experiments provided a sufficiently

large radius r was used. The following offers some insights

into observed robustness of the algorithm for this set of

16



test problems. Since the recurrent states tend to cluster in

a small number of groups (possibly one), the range of policy

choices for many states tends not to be constrained by the

limit of the neighboring states within the specified radius,

r. This is because the collection of neighboring states of

all recurrent states usually includes the neighboring states

* within a radius larger than r of a single recurrent state.

COMPUTATIONAL RESULTS

The data examined by Lambrecht, Luyten and Muckstadt [6]

were used as test data. In addition, the formulation was

extended to a three stage problem. All data are given in

TABLE 1. In TABLES 2-7, the CPU time in VAX 11/750 virtual

seconds and the number of policy iterations necessary to

solve each of the problems are given. A total of 36 different

problems were solved. Each was solved conventionally using

all states, and solved using the neighborhood procedure with

radii (r) of 1, /7, VT, 2, /. Of the 180 solutions using the

neighborhood approach, all but 1 were solved optimally. 10

cheap iterations were used per policy iteration.

The convergence criteria used were: 1. no policy changes

for any state within the neighborhood (of radius r) and 2.

the sum of the absolute values of the residuals (19] must be

less than a predetermined value. The value was set nominally

at an order of magnitude above the round-off error capability

of the computer for each particular problem. For the 121

state problems (TABLES 2 and 3), the average number of

17
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alternatives per state is 50 and relatively small amounts of

virtual storage are required. For the 1331 state problems

(TABLES 4 and 5) and 10648 state problems (TABLES 6 and 7),

the average number of alternatives per state are 147 and 137

respectively, and the requirements for virtual storage are

approximately 2 megabytes and 15 megabytes respectively (the

number of alternatives per state of the 10648 state problems

was limited artificially).

For 121 state problems (TABLES 2 and 3), the reduction

in computational effort runs generally about 67.2%. An

exception is problem 1, which has an unusually large number

of recurrent states. For the 1331 state problems the

reduction averages 93.6%. For the 10648 state problems,

the average reduction is greater than 99.5% in each case.

In almost all cases the optimal solution was achieved. The

exception occurs in problem 5, TABLE 5. This turned out to

be a difficult problem for the procedure. For a radius of 2

the final policy set was non-optimal. However, the gain for

that policy set was within 0.056% of optimal. In addition,

TABLE 5 problem 6, solutions of radius /2 and 3 were not

solved optimally initially. They were solved optimally with

the following simple extension to the procedure. When the

procedure converges, check a larger radius (/3 in this case)

on the last policy iteration. If the convergence criteria is

still satisfied, stop.

It is important to note that implementation of the

procedure is extremely easy. The code was written in FORTRAN

IV with only the simpliest of list processing applications

18
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4 (a few pointers is all that is necessary). By arranging

storage so that variables associated with a particular state

*are grouped together, the virtual memory software of the VAX

11/750 (or any other virtual machine) automatically keeps

those segments of memory associated with the recurrent set

- plus neighborhood in core. Non-active states are cycled to

the disk. This is particularly important for large problems.

In summary, an approach to solving specially structured

large scale Markov Decision Processes has been presented.

Experimental testing indicates that the computational savings

over conventional (all states) approaches are considerable

particularly for larger scale problems. Finally, the

procedure is easily programmed and can be readily configured

to take advantage of the natural strategies of virtual memory

*computers.

F:

I.I
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1 -7 W. .,..- .. -7

problem* 1 1 2 3 4 5 6
* III I

,setup costs stage I 1 :440 40 1T 5
stage 2 50 :4:10:4 5 10!
stage 3:100 1 5 : 1 : 20 5

II I I

holding stage 2: t 4 : 15 4 0o.5 2.7

Icost stage 31 1 3 7 3 2 :1.3
I I

variable stage 1 O I' 5O 1 7 : 50:0-,:7:'1

Iproduction stage 2: I : 40 : 15 : 40 : 5 15
#cost stage 31 1 : 30 7 : 30 : 20 7
I I I I I I I

shortage(TABLES 2,4,6)100 :200-:io 2 -0ioo
cost (TABLES 3,5,7)1200 :400 1200 :400 100 200

IIII I

demand(d) d-O 1.25 ,:.25 ,.15 :-.25 :.'"5 .-25-"
!distribution d-l 1.50 1.50 :.20 '.50 1.20 :.50 '

d-2 :.25 :.25 .30 :.25 :.30 1.25
I d=3 .20 '.20

d-4 .15 1.15 '

S* 11 levels of inventory (0-10) for each stage
results in 121 states for each 2-stage problem

(TABLES 2,3) and 1331 states for each 3-stage
problem (TABLES 4,5). 22 levels of inventory for

each stage results in 10648 states for each
3-stage problem (TABLES 6,7).

TABLE 1 Test problem input data
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(VAX 11/750) CPU time in Sec.

all Average
states r-l ' r- 2r2 2 r-r Computation

!Reduction
I! III

b--em 1o6.53 6.91 7.741 28.1%

problem 2 9.96: 2.45; 2.49 3.56 3.66 6§.5%

problem 3 5.95O0.7" 0.3 I.i0 1.24 83.6%

problem 4 5.53 I.10 1.16":--.28' 1.46: 77.4%

problem 5 5.68; 1.10 1-.26: 2-.--0 2.26: 58.2%

pro- em 6 5.55 0.-971 1.16: --.2 : 3-9: 78.4%
IIII I I

TABLE 2

(VAX 11/750) CPU time in Sec.

:all 1 2 1  Average

states r=1 r-/i r-2 r-/ Computation;
:Reduction

problem 1 9.68, 6.86: 7.93: 9.99:9.86: 10.5% 1
I I I II

problem 2 9.20 1.69: 1.74 :2.- 17:265 77.6%
, _ __ _ ______ __

problem 3 5.89 0.96 1.071 .33 156 79Y1%:
4' !

problem 4 5.5-71 1.2,5 -- -

problem 5 6.99: 0.95: 1.09 1.57: .28: 78.9%

problem 6 4.84 -. 5 1. T : 1.35 2.93 35.8%
III I I

Note: r=l: each state has 4 neighboring states
r-F: each state has 8 neighboring states

r-2: each state has 12 neighboring states
r-/5: each state has 20 neighboring states

TABLE 3

r2
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(VAX i1/750) CPU time in Sec.

states r- r=V- r=/3 r=2 r=y5 iComputationl
I IReduction

I I I
- I! I

problem I 636.271 8.34 10.71 1l.91 13.71 20.56' 97.9%

* I I

:problem 2110176.13,49.78,72.70111.51:120.90:224.32 98.9%
I IIII II

problem 3 878.26 5.6-4 9.- 10.53 12.13 15.42: 87.9%

'problem 4 2176.90 5.28: 9.84 8.52 9.76 12.08 99.6%

Cproblem 5: 606.74 12-.40 11.-22 14.88: 14.53 25.47 97.4%

problem61 441.79,23.21,33.70: 40.33: 28.92 31.23: 92.9%

TABLE 4

(VAX 11/750) CPU time in Sec.

all 13311 r Average
states r1l r=1 1 rf- r-2 r= Computation

Reduction

,problem 1I 1358.6113.88 17.60: 18.86: 21.73: 31.80: 98.5%

:problem 2: 997.6228.62 49.13 55.04 53.10: 96.66: 94.3%

:problem3 961.36:18.00 22.59 24.19 24.83: 28.31 97.5%

problem 4' 939.59:10.86 12.14: 13.09: 14.17: 14.39: 98.6%

problem 5 446.93 89.81:226.24 263.95: 86.25 125.65 64.6%

problem 6: 842.57 21.08: 48.84 54.35 31.04 33.40 95.5%

Note: r=1: each state has 6 neighboring states
r=,/-: each state has 18 neighboring states

rf=fv-: each state has 26 neighboring states
r-2: each state has 32 neighboring states

r- v5: each state has 56 neighboring states

TABLE 5
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%7

(VAX 11/750) CPU time in Sec.

I.-Itrn8 1Average
states r=l r=Y'2 r=/ r=2 rV5 Computation

_,__ _Reduction

1problem 1 9460 38:14 .3-0O15-.88 17.44 22.70: 28.43: 99.8%

pr-oble 2 -- 2-6-7-914-.4 2--.7 6- 19.50 -9.90 56.73 §9.9%

problem 3:10262.93: -74' 9.24: 9.55: 15.84: 16.63: 99.9%

problem 4 8469.15 -4.- 5.90: 5.74 8.95 10.97 99.9%

problem 8137.63 4-30 5-5.7--3: 5.92 10.98' 14.39 99.9%

'problem 6 10777.60 3 4.4225.38 51.23 40.19: 75.90: 99.6%

TABLE 6

(VAX 11/750) CPU time in Sec.

all 10648 , Average
states r=l r=/2 r=/: r=2 r=5 'Computation,

' :Reduction

'problem 1 10212.46:16.08:21.15: 20.87: 29.00: 42.261 99.7%

problem 2 7002.881 8.95 12.33: i0.70 17.00: 30.21 99.8%!-

I II

-problem 3 7276.78;33.04:30.56: 24.13 36.61 44.68 99.5%

problem 41 8947.70 7.67 9.41 9.64 9.53 12.62 99.9%

problems 5 7757.61:22.45 25.03:, 28.79: 30.26 40 99.6%

problem 6 9754.22 40.77:50.43: 49.28 53.71: 60.39: 99.5%

Note: r=l: each state has 6 neighboring states
r=v2-: each state has 18 neighboring states
r=, T: each state has 26 neighboring states
r=2: each state has 32 neighboring states
r= v: each state has 56 neighboring states

TABLE 7
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